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Abstract. We propose a dynamic model of mortgage credit losses. We assume
borrowers to hold assets covering the instalments and to own a real estate which
serves as a collateral; both the value of the assets and the price of the estate follow
general stochastic processes driven by common and individual factors. We describe
the correspondence between the common factors, the percentage of defaults and
the loss given default and we suggest a procedure of econometric estimation of the
model.
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1. Introduction

One of the sources of the recent financial crisis was the collapse of the mortgage business.
Even if there are there are ongoing disputes about the causes of the collapse, wrong risk
management seems to be one of them. Hence, realistic models of the lending institutions’
risk are of a great importance.

The textbook approach to the risk control of the loans’ portfolio, which is also a part of
the standard Basel II (2006), is that of Vasicek (2002) who deduces the rates of defaults of
the borrowers, and consequently the losses of the banks, from the value of the borrowers’
assets following a geometric Brownian motion.

We generalize the model in three ways:

1. We add a dynamics to the model (note that the Vasicek’s model is only one-period
one).

2. We allow more general distribution of the assets.

3. We add a sub-model of the losses given default which allows us to calculate the
overall percentage loss of the bank.

Similarly to the paper we generalize, there is a one-to-one correspondence between the
common factors and the percentage of defaults (PD) and losses given default (LGD) in
our model; using this, an econometrics of the bivariate series of PD’s and LGD’s may be
done.
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As to our knowledge, no dynamic generalization of the Vasicek’s model incorporating
the losses given default has been published yet. However, our approach to the dynamics
and/or common modelling of PDs and LGDs is not the only one:

• There are other, maybe more exact, ways to get the relevant information from the
past of the system, e.g. credit scoring (see Vasicek (2002) where the distribution
of the losses is a function of the probability of default) or observing the credit
derivatives (see d’Ecclesia (2008)). Another approach to the dynamics of could be
to track the situation of individual client’s (see e.g. Gupton at. al. (1997)) The
usefulness of our approach, however, could lie in the fact that our model is applicable
”from outside” (in the sense that it does not require banks’ internal information).

• Neither the joint modelling of the PD and the LGD is our exclusive invention (see e.g.
Witzany (2010) and the references therein); the novelty of our approach, however,
is the fact that the form of the dependence of the LGD on the common factor arises
naturally from the matter of fact rather than from any ad hoc assumption in our
model.

We do not perform actual estimations in the present paper; instead, we refer the reader to
papers Gapko and Šmı́d (2010a) and Gapko and Šmı́d (2010b) in which slightly simpler
models of PD’s, LGD’s respectively, are applied to real data.

The paper is organized as follows: after the general definitions (Section 2), the models
of PD’s (Section 3) and LGD’s (Section 4) are constructed. Then (Section 5) a procedure
of econometric estimation of the model is outlined. Finally (Section 6), the paper is
concluded.

2. The Setting

Let there be countably many potential borrowers, the i-th of them owning assets with
value Ai

t, t ≥ 0. At a time Si ∈ N0, the i-th borrower takes a mortgage of amount C i

with help of which he buys a real property with price dC i, d ≥ 1. The mortgage is repaid
by instalments amounting to bC i, b > 0, at each of the times Si + 1, Si + 2, . . . , Si + r
where r ∈ N is the same for all the borrowers.

Quite realistically, we assume that the value of the assets of the borrower is, in some
sense, proportional to the size of the mortgage: in particular,

ait− = ait−1 exp
{

∆Ỹt +∆Z̃ i
t

}

. t ∈ N, t ≥ Si,

where ait = Ai
t/C

i is the value of the assets per the unit of the debt, Ỹt is a common factor
(e.g. stock index) and Z̃ i

t , E∆Z̃
i
t = 0, is an individual factor such that (∆Z̃ i

t)i∈N,t>0 are
i.i.d. and independent of (∆Ỹt)t>0 and that the c.d.f. ψ̃ of ∆Z1

1 is continuous, strictly
increasing on R (∆ stands for a one-period difference).

At each period, there is a fixed percentage 1/r of new mortgages in the portfolio. We
greatly simplify our future calculations by assuming that, for any newly coming debtor i,
the conditional distribution of ait given ωt is the same as that of the old debtors. Even if this
assumption may seem deliberate, it is not in fact, because banks give a loan only to solvent
clients (i.e. those who prove that they would have been able to pay the instalments in the
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past as well). If we, in addition, suppose the client to spend the potential instalments for
something else in the past (e.g. for saving), we get exactly the same financial history of
a client whether he pays a mortgage or not.

We assume that the instalments are paid by means of selling the necessary amount of
the assets, i.e.

ait = ait− − b, t ∈ N, t > Si.

If ait < 0 then we say that the borrower defaults at t.

Further, in our model, the price P i
t of the real property, ownded by the i-th debtor,

fulfils
P i
Si = dC i, P i

t = exp
{

∆It +∆Ei
t

}

P i
t−1, t > Si,

where It is another common factor (e.g. real estate price index) and Ei
t , E∆E

i
t = 0, is an

individual factor such that (∆Ei
t)i∈N,t>0 are i.i.d., independent of (∆Z̃ i

t)i,t>0, Ỹ , I. Again
we assume the c.d.f φ of E1

1 to be continuous strictly increasing.

3. The Portfolio of Loans

Fix t ∈ N and renumber the potential borrowers so that only those who are active since
t−1 to t (i.e. those with t− r ≤ Si ≤ t−1) and did not default until t−1 are numbered.

Introduce Qi as a zero-one variable indicating whether the i-th borrower defaults at t:

Qi = 1[ait− < b] = 1[ȧit−1 +∆Ỹt +∆Z i
t < ḃ]

where ẋ stands for log x for any number x here as well as in the sequel. Without loss of
generality, we incorporate the relative instalments into the common factor and normalize

the equation by σ =
√

var∆Z̃1
1:

Qi = 1[äit−1 +∆Y t +∆Z i
t < 0]

where ∆Yt = (∆Ỹt − ḃ)/σ, ∆Z i
t = ∆Z̃ i

t/σ, ä
i
t−1 = ȧit−1/σ.

To simplify the notation, denote

ωt = (Y1, I1, Y2, I2, . . . , Yt, It)

the history both the common factors up to t,

Ωt = (Yτ , Iτ , Z
1
τ , E

1
τ , Z

2
τ , E

2
τ , . . . )τ≥t

the future of all the factor starting from t and

Ω0 = (ä10, ä
1
1, . . . ,Ω1).

Assume that the (conditional) distribution of C i is the same for all the borrowers and
that it depends only on the time of the start of the mortgage and on the common factors.
Reformulated an exact way:

C For any i, C i is conditionally independent of Ω0, C
1, . . . , C i−1, C i+1, . . . given (Si, ωSi)

and the conditional distribution of C i given (Si, ωSi) equals for all i.
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Further, assume

I(t) S1, S2, . . . are mutually independent, independent of Ω0 and P[Si = s] = 1
r
, s =

t− r, . . . , t− 1, i ∈ N.

and denote

Qt = lim
n→∞

1

n

n
∑

i=1

Qi

the percentage of the debtors who defaulted at t.1 Given that

A(t) ä1t−1, ä
2
t−1, . . . are mutually conditionally independent given ωt−1, and conditionally

independent of Ωt given ωt−1 with a common strictly increasing continuous condi-
tional c.d.f. ϑt−1 given ωt−1

we get, similarly to Vasicek (2002), by the Law of Large Numbers applied to a conditional
distribution, that

Qt = E(Q1|Yt, ωt−1) = P[ä1t−1 +∆Yt +∆Z1
t < 0|Yt, ωt−1] = Ψt(−∆Y t) (1)

where Ψt is the conditional c.d.f. of ä
i
t−1+∆Z i

t given ωt−1 (i.e. the c.d.f. of the convolution
of ϑt−1 and ψ where ψ is the c.d.f. of ∆Z1

1 ). Therefore,

Lemma 1. For given ωt−1, there exists a one to one mapping between Yt and Qt given by
(1). Specially,

∆Y t = −Ψ−1
t (Qt). (2)

Proof. The Lemma follows from (1) and from the measurability of ϑt−1 with respect to
ωt−1.

Before we go on, let us point out that the default of a borrower depends neither on the
“age” of the mortgage nor on the other defaults.

Lemma 2. S1, Q1, S2, Q2 . . . are mutually conditionally independent given ωt

Proof. By I(t), the variables S1, S2, . . . are mutually independent and independent of the
variables defining Q•. By A(t) and the mutual independence of the individual factors,
the variables Q1, Q2, . . . are mutually conditionally independent given ωt. The Lemma
follows from the chain rule Kallenberg (2002), Proposition 6.8.

Now, let us proceed to the portfolio at the next period: First, let us exclude all the
borrowers who defaulted at t (i.e. with Qi = 1) and denote [j] the index of the j-th
borrower out of those who did not default at t. Thanks to the independence of Si of the
variables underlying Qi, all the “ages” occur uniformly among the “survivors”:

Lemma 3. S [1], S [2], . . . are mutually independent, independent of Ω0 and P[S [j] = s] =
1/r for any t− r ≤ s ≤ t− 1 and j ∈ N.

1This and all the other cases of the convergence are in probability.
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Proof. By I(t), all the random variables [1], [2], . . . are defined by means of variables,
independent of S1, S2, . . . hence, the Lemma might follows from Hoffmann-Jørgenson
(1994) 4.5.2.

As to the assets of the survivors, we are getting

Lemma 4. ä
[1]
t , ä

[2]
t , . . . are conditionally i.i.d. given ωt, conditionally independent of Ωt+1

given ωt, and

P

[

a
[1]
t ≤ z

]

=
Ψt(z −∆Yt)−Qt

1−Qt

, z ≥ 0.

Proof. The conditional independence follows from the (conditional) independence of the
underlying variables. The formula on the RHS is that of the distribution of the debtor’s
assets immediately before t, truncated at zero. A formal proof may be found in Šmı́d
(2010).

Now let us remove all the debtors, who successfully finished paying the mortgage at t,
from the portfolio and add the newcomers. Since the both the ratios of the leavers and
the newcomers is 1/r according to Lemma 3, our assumptions respectively, and since we
supposed the initial distribution of the assets to be the same for the newcomers as for the
active debtors, we may, without any loss of generality, give the indices of the leavers to
the newcomers; together with Lemma 3, this will clearly imply I(t+1) with [i] instead of
i. Moreover, it follows from Lemma 4, that A(t+1) holds true with [i] instead of i and
with

ϑt−1(z) =
Ψt−1(z −∆Yt−1)−Qt−1

1−Qt−1

. (3)

Summarized,

Corollary 1. C+I(1)+A(1) implies I(t)+A(t) for any t with (3) given a subsequent
renumbering by [. . . ] for any t > 1.

Until the end of the paper, assume C+I(1)+A(1) and note that the conditional indepen-
dence in A(1) is in fact the ordinary one.

4. The Loss of the Bank

In the present Section, we shall study the (percentage) loss of the bank at the time t:
Denote H i the exposure at default (i.e. the remaining debt) of the i-th borrower at t and
assume that

H i = p(t− Si)C i,

for some decreasing function fulfilling p(1) = 1 (the shape of p may depend on the way of
interest calculation and the accounting rules of the bank). The amount which the bank
will recover in case of the default of the i-th debtor at time t is then

Gi = min(P i
t , H

i) = C imin

(

d exp

{

t
∑

i=Si+1

[

∆I it +∆Ei
t

]

}

, p(t− Si)

)

= C i
i exp

{

min

(

ḋ+

t
∑

i=Si+1

[

∆I it +∆Ei
t

]

)

, log(p(t− Si))

}

.
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while the percentage loss given default, i.e. the ratio of the actual losses and the total
exposure at default, comes out as

Lt = lim
n→∞

∑n

i=1Q
i(H i −Gi)

∑n

i=1Q
iH i

= 1− lim
n→∞

n−1
∑n

i=1Q
iGi

n−1
∑n

i=1Q
iH i

= 1− limn→∞ n−1
∑n

i=1Q
iGi

limn→∞ n−1
∑n

i=1Q
iH i

(the last identity holds thanks to Kallenberg (2002), Corollary 4.5.).

It follows from our assumptions that, in both the sums, the summands are condition-
ally i.i.d. given ωt, hence

lim
n→∞

n−1

n
∑

i=1

QiGi = E(Q1G1|ωt) = E(Q1|ωt)E(G
1|ωt) = QtE(G

1|ωt)

by the LLN (first “=”), Lemma 2 together with assumptions C and I(t) (second “=”)
and relation (1) (third “=”). Since, analogously,

lim
n→∞

n−1

n
∑

i=1

QiH i = QtE(H
1|ωt),

we are getting

Lt = 1− E(G1|ωt)

E(H1|ωt)
.

Evaluating both the expectations, we get

E(H1|ωt) = E
(

E(H1|ωt, S
1)|ωt

)

=
t−1
∑

s=t−r

1

r
p(t− s)cs(ωt−1),

cs(ω) = E(C1|S1 = s, ωt−1 = ω)

and

E(G1|ωt) = E
(

E(G1|ωt, S
1)|ωt

)

=
t−1
∑

s=t−r

1

r
p(t− s)cs(ωt−1)es(Ĩs)

es(ι) = dE
(

exp
{

min
(

Ĩs + Ẽs, ws

)}

|Ĩs = ι
)

where Ĩs = It − Is, Ẽs = E1
t − E1

s and ws = log(p(t− s))− ḋ. Further, we are getting

es(ι) = dE(exp
{

Ĩs

}

exp
{

min(Ẽs, ws − Ĩs)
}

|Ĩs = ι)

= deι
[
ˆ ws−ι

−∞

exdΦ(t−s)(x) + ews−ι(1− Φ(t−s)(ws − ι))

]

= deι
ˆ ws−ι

−∞

exdΦ(t−s)(x) + p(t− s)
[

1− Φ(t−s)(ws − ι)
]

where Φ(ν) is a c.d.f. of the sum of ν independent copies of ∆E1
1 (i.e. the ν−th convolution

of φ). Consequently, the loss given default equals to

Lt = 1− 1∑
s p(t−s)cs(ωt−1)

∑t−1
s=t−r p(t− s)cs(ωt−1)hs

(

Ĩs

)

, (4)
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where

hs(ι) = deι
ˆ ws−ι

−∞

exdΦ(t−s)(x) + p(t− s)[1− Φ(t−s)(ws − ι)]

or, integrating by parts,

hs(ι) = deι
[

Φ(t−s)(ws − ι)ews−ι −
ˆ ws−ι

−∞

Φ(t−s)e
xdx

]

+ p(t− s)[1− Φ(t−s)(ws − ι)]

= p(t− s)− deι
ˆ ws−ι

−∞

Φ(t−s)(x)e
xdx.

Since, by the latter formula,

∂

∂ι
hs(ι) = deι

(

Φ(t−s)(ws − ι)ews−ι −
ˆ ws−ι

−∞

Φ(t−s)(x)e
xdx

)

=

= deι
(

Φ(t−s)(ws − ι)

ˆ ws−ι

−∞

exdx−
ˆ ws−ι

−∞

Φ(t−s)(x)e
xdx

)

= deι
(
ˆ ws−ι

−∞

Φ(t−s)(ws − ι)exdx−
ˆ ws−ι

−∞

Φ(t−s)(x)e
xdx

)

= deι
(
ˆ ws−ι

−∞

[

Φ(t−s)(ws − ι)− Φ(t−s)(x)
]

exdx

)

> 0

we see that h is strictly increasing. Consequently,

Lemma 5. For given ωt−1 there is one-to-one mapping between Lt and It, given by (4).
Specially,

∆It = Υ−1
t (1− Lt), (5)

where

Υt(ι) =
1

∑

s cs(ωt−1)

t−1
∑

s=t−r

[cs(ωt−1)hs (Is+1 + · · ·+ It−1 + ι)]

To close the topic of the losses of the bank, let us note that the overall percentage loss of
the bank is, given our assumptions,

Kt = lim
n→∞

∑n

i=1Q
i(H i −Gi)

∑n

i=1H
i

= QtLt

(the RHS is easy to obtain analogously to the previous text).

5. Notes on Econometrics of the Model

Assume we have the sample

Q1, L1, Q2, L2, . . . , QT , LT

at our disposal and want to infer (some of) the parameters of our model, whose list is

L(Y, I), cs(ω), r, d, p, ϑ0, ψ, φ.

Clearly, some further simplification of such a rich parameter space has to be done; this is,
however, a task for potential users of the model. Here we only outline a possible procedure
of such an inference.
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Step 1 – Extraction of Y

Since the expectation and variance of ∆Z1
1 are given (equal to 0, 1 respectively), it does not

seem to be a big harm of reality to assume a particular (say standard normal) distribution
of ∆Z1

1 . If we, a bit more arbitrarily, assume that äi0 = Y0 + ǫi0 where ǫ ∼ N(0, σ2
0) for

some σ0 then we get Ψ1(z) = ψ
(

(z − Y0)/
√

1 + σ2
0

)

and, by (2), Y1 =
√

1 + σ2
0ψ

−1(Q1).

To get Y2, Y3, . . . , one can use (2) again; however, it is non-trivial to compute the c.d.f.’s
Ψ2,Ψ3, . . . each of which is a convolution of standard normal distribution with a truncation
of an (already non-trivial) distribution; it seems that the only way to evaluate the c.d.f.’s
is to use a Monte Carlo simulation.

Step 2 – Extraction of I

Here, the situation is a bit more complicated, because the mapping transforming L to I is
more complex and depends on a greater number of the parameters. Therefore, we assume
that the values of r, d and the shapes of p and c are known to us. Again we shall suppose
the individual factor ∆E1

1 to be normal; however, since the ratio of the exposure to the
individual factor influences the result strongly, we cannot normalize the individual factor
here. Even if the variance of ∆E1

1 could be incorporated into the estimation of the whole
model, see Gapko and Šmı́d (2010b), here we assume the variance of ∆E1

1 to be known,
equal to ρ2 > 0. Thanks to the normality, we may avoid the integration when computing
hs: if we denote ϕ the standard normal c.d.f. and put ̺ =

√
nρ, we get

ˆ ws−ι

−∞

exdΦ(t−s)(x) =

ˆ ws−ι

−∞

1√
2π̺

e
− x2

2̺2 exdx

=
1√
2π̺

ˆ ws−ι

−∞

exp

{

−x
2 − 2̺2x+ ̺4

2̺2
+

1

2
̺2
}

dx

= exp

{

1

2
̺2
}
ˆ ws−ι

−∞

1√
2π̺

exp

{

−(x− ̺2)2

2̺2

}

dx

= exp

{

1

2
̺2
}

P
[

N(̺2, ̺2) < ws − ι
]

= exp

{

1

2
̺2
}

ϕ

(

ws − ι

̺
− ̺

)

and, consequently

hs(ι) = d exp

{

1

2
̺2 + ι

}

ϕ

(

ws − ι

̺
− ̺

)

+ p(t− s)

[

1− ϕ

(

ws − ι

̺

)]

.

The only serious obstacle complicating our effort is the fact that r past values of I are
needed to get It from Lt; to overcome this, we suggest to assume r = t for t ≤ r. Given
this assumption, we easily get I from L by means of (5).

Step 3 – Econometrics of the common factors

Now that we have the values of the common factor, we may perform their estimation and
eventual forecasting: by using the mappings (1) and (4), we may do the same for the
pair Q,L. Note that it follows from our assumptions that the independence of Y and I
implies the independence of Q and L; however, we do not expect the common factors to
be independent in reality.
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6. Conclusion

In the present paper, we suggested a potentially estimable model of credit losses. Even if
it is rather general, a bit less could be assumed if a user wished it, especially

• the distribution of the individual factors need not be the same at all periods but it
might depend on the time and on the past of the common factor,

• a dependence of the the individual factors ∆Ei
t and ∆Z i

t could be established.

While the first generalization would not change our formulas much (some indices would
have to be added to the present notation), the second one would bring the necessity to work
with a conditional distribution of ∆E given not defaulting, for which no analytical formula
exists even in the simple case of normal factors. Studying these and other generalization
as well as application of the model in practice is a promising topic of a further research,
as well as finding econometric explanations of the common factors.
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